
COGNITIVE COMPUTING FOR INTELLIGENT APPLICATION AND SERVICE

An LBP encoding scheme jointly using quaternionic representation
and angular information

Rushi Lan1,2 • Huimin Lu3 • Yicong Zhou4 • Zhenbing Liu5 • Xiaonan Luo5

Received: 13 July 2018 / Accepted: 20 December 2018
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Local descriptors play a crucial role in numerous computer vision and pattern recognition applications. This paper proposes

a novel local descriptor, called the quaternionic local angular binary pattern (QLABP), for color image classification.

QLABP is based on the quaternionic representation (QR) of color images such that it is able to handle all color components

holistically as well as consider their relations. Using QR, the quaternionic angular information is further developed to

account for more color characteristics. We provide two ways to derive the quaternionic angular information from different

perspectives. A pattern encoding operation is finally conducted on the obtained angular information to obtain QLABP. The

effectiveness of QLABP has successfully been evaluated by comparing with several state-of-the-art descriptors.

Keywords Quaternionic representation (QR) � Local binary pattern (LBP) � Quaternionic angular information �
Image classification

1 Introduction

Local descriptors are widely used features in the fields of

computer vision and pattern recognition [5, 10, 32, 33, 38].

A large number of local descriptors have been proposed

from different perspectives so far. Among existing local

descriptors, the local binary pattern (LBP) [26] has been

regarded as one of the most successful and popular char-

acteristics because of its impressive performance in many

practical applications. Considerable effort has been devo-

ted to improving the discriminative capabilities and

robustness of LBP from different perspectives. Represen-

tative LBP variants include completed LBP (CLBP) [12],

robust LBP (RLBP) [25], local ternary patterns (LTP) [31],

discriminative robust LBP (DRLBP) [29], quaternionic

local ranking binary pattern (QLRBP) [18], and quater-

nionic Michelson contrast binary pattern (QMCBP) [17],

etc.

With the rapid development of imaging equipment,

more attention has been paid to extracting local features

from color images. A common strategy is to perform the

aforementioned LBP-based approaches to each color

channel individually and then concatenate the derived

features together to form a final feature vector. However,

such a strategy does not take the relations among different

color channels into account, which contain valuable

information that will benefit the classification performance.

To solve this kind of problem, Lee et al. [21] proposed a

local color vector binary pattern (LCVBP) for color ima-

ges, which considers the relation between two color

channels by their ratio. The authors in [16] developed a

method that converts an image into a graph and explored

the shortest paths to discover the relations among color

channels. Satisfactory results were achieved.
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To efficiently consider the interactions between color

channels, a color image representation, termed quater-

nionic representation (QR) [6, 7, 19], has been utilized to

derive local descriptors. QR exploits a quaternion to

encode all color channels such that it handles them in a

holistic manner and includes their relations simultaneously.

A quaternionic LBP (QLBP) [20] and its extended version

QLRBP were proposed by combining both advantages of

QR and LBP. Comparison results have shown that QLRBP

outperforms LBP and some of its improved versions.

QLBP performs LBP on the phase image of the Clifford

translation (CT) transformed result to extract local

descriptors. Compared with the ratio of the two color

channels used in LCVBP, this phase consists of more

discriminative characteristics among the color channels.

However, QLBP and QLRBP just take one phase into

account to derive features. It is interesting to further con-

sider the interactions between different phases to obtain

local descriptors.

In this paper, we propose a novel local descriptor,

named the quaternionic local angular binary pattern

(QLABP), for color image classification. QLABP is

derived in the quaternion domain such that it takes

advantage of QR for color images. Compared with QLBP

and QLRBP in which local descriptors are extracted from

one phase, QLABP involves a quaternionic angular that is

developed to consider the relations between two phases

such that it contains more comprehensive color character-

istics. A pattern encoding procedure is finally conducted on

the quaternionic angular to achieve the QLABP descriptor.

The comparison results on three representative texture

databases demonstrate the effectiveness of QLABP.

The remainder of the paper is organized as follows.

Section 2 introduces the related mathematical background

about quaternion algebra. Section 3 describes the proposed

QLABP algorithm in detail. In Sect. 4, several experiments

are carried out to evaluate QLABP. Section 5 presents our

conclusions.

2 Quaternion algebra

As a 4D generation of the traditional 2D complex number

system, a quaternion _q consists of one real part and three

imaginary parts as follows [8, 13]:

_q ¼ qþ aiþ bjþ ck; ð1Þ

where q, a, b, and c are real numbers, and fi; j; kg are the

basic imaginary units that satisfy the following relation-

ships, respectively.

i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1;

ij ¼ �ji ¼ k; jk ¼ �kj ¼ i; ki ¼ �ik ¼ j:

q is the real part of _q, and aiþ bjþ ck is the imaginary

part. If q ¼ 0, _q is a pure quaternion.

Several basic properties of quaternion algebra can be

similarly derived as the complex number system. For

instance, the conjugate, modulus, and inverse of _q are

defined as follows, respectively:

_q� ¼ q� ðaiþ bjþ ckÞ; ð2Þ

j _qj ¼
ffiffiffiffiffiffiffi

_q _q�
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ a2 þ b2 þ c2
p

; ð3Þ

_q�1 ¼ _q�

j _qj2
: ð4Þ

Note that _q is a unit quaternion if j _qj ¼ 1. For simplicity,

we represent the real and imaginary parts of _q by Sð _qÞ and
Vð _qÞ. Equation (1) can be converted to a polar version as:

_q ¼ j _qje _lh ¼ j _qjðcos hþ _l sin hÞ; ð5Þ

where _l ¼ Vð _qÞ
jVð _qÞj and h ¼ tan�1 jVð _qÞj

Sð _qÞ . _l is known as the

eigenaxis of _q, and h is the phase (or eigenangle). In the

following, we will use hð�Þ as an operator to extract the

phase of a quaternion. More details about quaternion

algebra can be found in [7, 13].

3 Methodology

This section details the proposed QLABP descriptor. Fig-

ure 1 illustrates a schematic picture of the QLABP

descriptor, which consists of three key steps, namely QR of

color images, quaternionic angular information extraction,

and pattern encoding, respectively. In the following sec-

tion, we will present these steps successively.

3.1 QR of color images

To handle the color image in the quaternionic domain, the

first step is to represent it by quaternions. However, the

color image is usually described in the RGB color space,

which is a 3D space, while the quaternion is a 4D number

Fig. 1 A schematic picture of the quaternionic local angular binary

pattern (QLABP) descriptor
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system. To remove this mismatch, the imaginary parts of a

quaternion are used to represent a color pixel as [7]:

_Qðx; yÞ ¼ Rðx; yÞiþ Gðx; yÞjþ Bðx; yÞk; ð6Þ

where _Qðx; yÞ is the QR of the color pixel, and R(x, y),

G(x, y), and B(x, y) are the red, green, and blue compo-

nents of a color pixel, respectively. _Qðx; yÞ provides a one-
to-one mapping between the quaternionic domain and the

RGB color space. Any operations to _Qðx; yÞ will affect all
the color channels such that the interactions among the

different channels will be considered simultaneously.

3.2 Angular information extraction
in the quaternion domain

Using the QR, the color image is represented by a quater-

nionicmatrix whose elements are quaternion numbers. In the

following section, we will present two methods for extract-

ing the angular information in the quaternion domain.

3.2.1 Quaternion-based angular information (QAI)

Inspired by LCVBP that is derived from the ratio of two

color channels, it is natural to extract the angular infor-

mation using two quaternions. To this end, it is necessary

to generate two other quaternionic matrices from the QR of

the color image first. Here, we consider the Clifford

transform (CT) [20], a commonly used operator to trans-

form a quaternion to another quaternion, to derive the

angular information. Let _P ¼ aiþ bjþ ck be a pure unit

quaternion (j _P ¼ 1j). The CT of _Q in Eq. (6) by _P is

defined as follows:1

CT ð _Q; _PÞ ¼ _Q _P ¼ �ðRaþ Gbþ BcÞ þ ðGc� BbÞi
þ ðBa� RcÞjþ ðRb� GaÞk:

ð7Þ

The coefficients of CT ð _Q; _PÞ measure the differences

between fR;G;Bg and fa; b; cg. Let _P1 ¼ a1iþ b1jþ c1k

and _P2 ¼ a2iþ b2jþ c2k ( _P1 6¼ _P2) be two pure unit

quaternions. Hence, CT ð _Q; _P1Þ and CT ð _Q; _P2Þ highlight
the different characteristics of _Q. Then, the developed QAI,

denoted by K1
2 here, is defined as follows:

K1
2 ¼ h

CTð _Q; _P1Þ
CTð _Q; _P2Þ

� �

; ð8Þ

where hð�Þ is the phase of a quaternion. It can be seen that

K1
2 is derived from the ratio of two quaternions. Compared

with LCVBP, which is based on the ratio of two color

channels,
CTð _Q; _P1Þ
CTð _Q; _P2Þ

accounts for many comprehensive color

characteristics. The hð�Þ is used to convert
CTð _Q; _P1Þ
CTð _Q; _P2Þ

from the

quaternion domain to real domain that will be more con-

venient for feature extraction.

3.2.2 Phase-based angular information (PAI)

The phase of a quaternion describes the relation between

the coefficients of the real and imaginary parts. Consider-

ing the Clifford transform in Eq. (7), its phase U can be

achieved by:

U ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðGc� BbÞ2 þ ðBa� RcÞ2 þ ðRb� GaÞ2
q

�ðRaþ Gbþ BcÞ :

ð9Þ

Our previous studies have shown that U takes more com-

plex relations between different channels into account [18].
_P is regarded as a reference quaternion in this situation. U

will be large if _Q and _P are more similar to each other.

More discussions about the phase of the CT result can be

found in [20, 34].

In the phase extraction stage, CT is performed to each

pixel of the image by the same reference quaternion. The

image characteristics, which are similar to the reference

quaternion _P, are highlighted. We can comprehensively

explore the image features by applying several reference

quaternions. In order to strengthen the representation

ability, it is necessary to further consider the interaction

between different phases. Inspired by the LCVBP

descriptor, we propose a quaternionic angular to represent

the relation between two phases. Let U _P1
and U _P2

be two

phases derived by two different quaternions _P1 ¼ a1iþ
b1jþ c1k and _P2 ¼ a2iþ b2jþ c2k. The phase-based

angular information (PAI), denoted by D1
2, is defined as

follows:

D1
2 ¼ tan�1

U _P1

U _P2

: ð10Þ

To provide an in-depth analysis of D1
2, we substitute U _P1

and U _P2
into

U _P1

U _P2

resulting in:

U _P1

U _P2

¼
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðGc1�Bb1Þ2þðBa1�Rc1Þ2þðRb1�Ga1Þ2
p

�ðRa1þGb1þBc1Þ

tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðGc2�Bb2Þ2þðBa2�Rc2Þ2þðRb2�Ga2Þ2
p

�ðRa2þGb2þBc2Þ

: ð11Þ

Note that tan�1 x can be represented using the following

series representation:1 Note that there are two types of CT for a quaternion, namely the left

CT and right CT, and their phases are equal. We use the right CT as in

Eq. (7) to illustrate the derivation of QLABP in this paper.
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tan�1 x ¼ x

1þ x2

X

1

n¼0

Y

n

s¼1

2lx2

ð2lþ 1Þð1þ x2Þ : ð12Þ

Combining Eqs. (9) and (12) together, we can derive:

U _Pl
¼ �xl

ffiffiffiffi

ml
p

ml þ x2
l

ul; ð13Þ

where l 2 f1; 2g; ml ¼ ðGcl � BblÞ2 þ ðBal � RclÞ2þ
ðRbl � GalÞ2, xl ¼ Ral þ Gbl þ Bcl, and

ul ¼
P1

n¼0

Qn
s¼1

2sml
ð2sþ1Þðmlþx2

l
Þ. It can be seen that ml and xl

describe the similarity of _Q and _Pl from different aspects,

namely ml denotes the difference of the cross-multiplica-

tions of two color components, and xl applies the inner

product to represent the similarity. Using Eq. (13), we can

rewrite Eq. (11) as:

U _P1

U _P2

¼ x1
ffiffiffiffiffi

m1
p

x2
ffiffiffiffiffi

m2
p � x

2
2 þ m2

x2
1 þ m1

� u1

u2

: ð14Þ

We can observe that Eq. (14) exploits various combina-

tions of ml and xl to describe the relations between _Q and
_Pl. More comprehensive relations between color compo-

nents can be explored using different _Pl.

3.3 QLABP

Although the quaternionic angular can be directly applied

as a feature for color images, we further perform a pattern

encoding operation to make the achieved descriptors more

robust and discriminative. LBP has been proven to be a

simple yet quite efficient method to describe the local

characteristics; therefore, we conduct an LBP coding to the

quaternionic angular information of the QR of the color

images. Hence, the derived feature is called the quater-

nionic local angular binary pattern (QLABP). Figure 2 also

illustrates the derivation of QLABP for a color image. To

comprehensively capture the image characteristics, we

further utilize the 2D joint histogram of two QLABP

encoding results as the final feature representation for color

images.

4 Experimental results

In this section, several experiments will be carried out to

evaluate the performance of the proposed QLABP

descriptor for color image classification. The setting of all

experiments is first given, and the results on the used

datasets are presented successively. Finally, a discussion on

time complexity is provided.

4.1 Experimental setting

Three representative texture databases, namely KTH-

TIPS2-a [15], KTH-TIPS [15], and USPTex [1], are chosen

for evaluation. The detailed information of these datasets,

including the number of classes, number of each class, and

the total number of images, is listed in Table 1. Some

example texture images of these datasets are shown in

Fig. 3. In this work, three pairs of reference quaternions,

namely (i, j), (i, k), and (j, k), are chosen to generate the

QLABP descriptor. Three 2D joint histograms, derived

from fQLABPi;j;QLABPi;kg, fQLABPi;j;QLABPj;kg, and
fQLABPi;k;QLABPj;kg respectively, are concentrated to

form a feature vector for classification. Here, we apply

QLABPq and QLABPp to denote the features that are

Fig. 2 Illustration of extracting QLABP from a color texture image.

a An example of a color texture image. b, c The phase image

extracted by using i and j as reference quaternions. d The quaternionic

angular derived from the two phase images. e The LBP encoding

result from the phase angle image

Table 1 Image datasets used for evaluation

Dataset name No. of classes No. of each class Total images

KTH-TIPS2-a 11 Vary 4395

KTH-TIPS 10 81 810

USPTex 191 12 2292
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extracted via the quaternion-based angular information and

phase-based angular information, respectively.

4.2 KTH-TIPS2-a dataset

This dataset consists of 11 materials, such as cork, cracker,

and linen, etc. Note that the images that are 200� 200 in

size are selected for evaluation, and the total number of

images is 4395. For each material, the images are captured

in various scales, illumination directions, and poses. In this

test, the following local descriptors are chosen for evalu-

ation: LBP [26], WLD [4], LCVBP [21], QLBP [20],

DRLBP [29], DRLTP [29], and QLRBP [18], respectively.

The experiment here is identically set as that applied in the

literature [4, 29]. The classification performance of all

methods is reported in Table 2. We can observe that WLD,

LCVBP, and QLBP achieve similar performance, and they

work better than LBP and DRLBP. For this dataset, the

performance of QLABPq is comparable with that of

LCVBP and QLBP. QLABPp outperforms QLABPq by 4%

and also surpasses other comparative features by different

degrees.

4.3 KTH-TIPS dataset

This dataset includes ten classes of texture images, and

there are 81 images for each class. All images in this

dataset are 200� 200 in size. In this experiment, the pro-

posed QLABP is compared with the schemes in [3, 11],

LBP [26], LCVBP [21], WLD [4], QLBP [20], and QLRBP

[18], respectively. As in [11], the experiment is carried out

by the leave-one-out strategy, and the nearest neighbor

(NN) classifier is applied. Table 3 illustrates the classifi-

cation rates of all test approaches. It can be seen that the

local descriptors surpass the CK-1 and sparse algorithms

proposed in [3, 11]. Among the local descriptors, the

classification rate of LBP is slightly smaller than that of the

other descriptors. The performances of LCVBP, WLD, and

QLBP are similar in this case. QLABPp and QLRBP obtain

the same results here, and they both outperform QLABPq.

Fig. 3 Sample images of color texture images used in the experiments. The images in the first to third rows are randomly chosen from the KTH-

TIPS2-a, KTH-TIPS, and USPTex datasets, respectively

Table 2 Classification results (%) of KTH-TIPS2-a dataset using

different features

Methods KTH-TIPS2-a dataset

LBP [26] 58.2

WLD [4] 61.0

LCVBP [21] 61.5

QLBP [20] 61.7

DRLBP [29] 59.0

DRLTP [29] 62.6

QLRBP [18] 64.5

QLABPq 61.4

QLABPp 65.4

The best result is in bold
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4.4 USPTex dataset

This dataset has 191 classes of texture images, and each

class contains 12 images with a size of 128� 128. Apart

from the LBP, LCVBP, WLD, QLBP, and QLRBP meth-

ods, the following schemes are selected for comparison:

average RGB, LBP ? Haralick [28], MSD [22], Multilayer

CCR [2], HRF [27], Gabor EEE [14, 30], and shortest

graph [16]. As in the literature, the experiment here is set as

follows. For each class, two-thirds of the images are ran-

domly selected to use as the training set, and the remaining

images are regarded as the testing set. The NN classifier is

applied, and the average rate of ten runs is utilized as the

classification result of each method. Table 4 lists the

performance of all the methods. It can be seen that Gabor

EEE, LCVBP, WLD, and QLABP approaches obtain more

satisfactory results for this dataset. QLBP performs worse

than LBP by approximately three percent, and QLRBP also

does not perform very well too. Compared with QLBP and

QLRBP, QLABPp considers more color characteristics

such that it obtains a significant improvement and sur-

passes all the other methods.

4.5 Time complexity analysis

In this part, we study the time complexity of QLABP.

Compared with the original LBP, the proposed QLABP

further carries out the following operations: quaternionic

representation of an input color image and angular infor-

mation extraction. These two operations are conducted

matrixwise such that they are not time-consuming. Here,

we conduct QLABPq, QLABPp, and LBP to 100 color

images whose sizes are resized to 512� 512. Note that

LBP is performed to the grayscale version of the corre-

sponding color images. The average running times of all

the methods are reported in Table 5. It can be seen that

among the three methods, LBP requires the least running

time, while QLABPq is the most time-consuming.

Although QLABPq and QLABPp need approximately 0.08

and 0.06 s additionally, they are all with same time com-

plexity with LBP.

5 Conclusion

We have presented a novel quaternionic local descriptor

(the QLABP) for image classification. Compared with

conventional local descriptors, QLABP is based on the QR

of the color image such that it takes advantage of the

superiorities of QR. Additionally, QLABP considers more

color characteristics in comparison with QLBP. Experi-

ments on three representative databases (i.e., KTH-TIPS2-

a, KTH-TIPS, and USPTex) clearly demonstrated that

QLABP achieved better performance than several state-of-

the-art local descriptors for color texture classification. In

the future, to further improve the performance of QLABP,

the well-known feature learning schemes, such as

[9, 23, 24, 35–37], can be used in the QLABP framework

to derive more robust and discriminative features for color

images.

Table 4 Classification results (%) of the USPTex dataset using dif-

ferent features

Methods USPTex dataset

Average RGB 36.19

LBP ? Haralick [28] 73.17

MSD [22] 51.29

Multilayer CCR [2] 82.08

HRF [27] 49.86

Gabor EEE [14, 30] 92.58

Shortest Graph [16] 66.71

LBP [26] 87.84

LCVBP [21] 92.48

WLD [4] 92.34

QLBP [20] 84.82

QLRBP [18] 86.74

QLABPq 85.96

QLABPp 93.80

The best result is in bold

Table 3 Classification results (%) of the KTH-TIPS dataset using

different features

Methods KTH-TIPS dataset

CK-1 [3] 86.00

Sparse [11] 84.50

LBP [26] 93.83

LCVBP [21] 96.54

WLD [4] 97.28

QLBP [20] 97.41

QLRBP [18] 98.64

QLABPq 95.56

QLABPp 98.64

The best results are in bold

Table 5 Average running times

(in seconds) of LBP, QLABPq,

and QLABPp to color images

with a size 512� 512

Methods Running time

LBP 0.1170

QLABPq 0.1941

QLABPp 0.1753
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